Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Cell Death Discov ; 10(1): 191, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664396

RESUMO

Inflammasome assembly is a potent mechanism responsible for the host protection against pathogens, including viruses. When compromised, it can allow viral replication, while when disrupted, it can perpetuate pathological responses by IL-1 signaling and pyroptotic cell death. SARS-CoV-2 infection was shown to activate inflammasome in the lungs of COVID-19 patients, however, potential mechanisms responsible for this response are not fully elucidated. In this study, we investigated the effects of ORF3a, E and M SARS-CoV-2 viroporins in the inflammasome activation in major populations of alveolar sentinel cells: macrophages, epithelial and endothelial cells. We demonstrated that each viroporin is capable of activation of the inflammasome in macrophages to trigger pyroptosis-like cell death and IL-1α release from epithelial and endothelial cells. Small molecule NLRP3 inflammasome inhibitors reduced IL-1 release but weakly affected the pyroptosis. Importantly, we discovered that while SARS-CoV-2 could not infect the pulmonary microvascular endothelial cells it induced IL-1α and IL-33 release. Together, these findings highlight the essential role of macrophages as the major inflammasome-activating cell population in the lungs and point to endothelial cell expressed IL-1α as a potential novel component driving the pulmonary immunothromobosis in COVID-19.

2.
J Am Chem Soc ; 146(12): 8149-8163, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38442005

RESUMO

Eukaryotic mRNAs undergo cotranscriptional 5'-end modification with a 7-methylguanosine cap. In higher eukaryotes, the cap carries additional methylations, such as m6Am─a common epitranscriptomic mark unique to the mRNA 5'-end. This modification is regulated by the Pcif1 methyltransferase and the FTO demethylase, but its biological function is still unknown. Here, we designed and synthesized a trinucleotide FTO-resistant N6-benzyl analogue of the m6Am-cap-m7GpppBn6AmpG (termed AvantCap) and incorporated it into mRNA using T7 polymerase. mRNAs carrying Bn6Am showed several advantages over typical capped transcripts. The Bn6Am moiety was shown to act as a reversed-phase high-performance liquid chromatography (RP-HPLC) purification handle, allowing the separation of capped and uncapped RNA species, and to produce transcripts with lower dsRNA content than reference caps. In some cultured cells, Bn6Am mRNAs provided higher protein yields than mRNAs carrying Am or m6Am, although the effect was cell-line-dependent. m7GpppBn6AmpG-capped mRNAs encoding reporter proteins administered intravenously to mice provided up to 6-fold higher protein outputs than reference mRNAs, while mRNAs encoding tumor antigens showed superior activity in therapeutic settings as anticancer vaccines. The biochemical characterization suggests several phenomena potentially underlying the biological properties of AvantCap: (i) reduced propensity for unspecific interactions, (ii) involvement in alternative translation initiation, and (iii) subtle differences in mRNA impurity profiles or a combination of these effects. AvantCapped-mRNAs bearing the Bn6Am may pave the way for more potent mRNA-based vaccines and therapeutics and serve as molecular tools to unravel the role of m6Am in mRNA.


Assuntos
Capuzes de RNA , Vacinas , Animais , Camundongos , RNA Mensageiro/genética , Capuzes de RNA/química , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , Biossíntese de Proteínas , Metilação
3.
Endocr Relat Cancer ; 30(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37130273

RESUMO

Differentiated thyroid cancers (DTCs) are malignancies that demonstrate strong but largely uncharacterized heritability. Germline variants that influence the risk of DTCs localize in disrupted in renal carcinoma 3 (DIRC3), a poorly described long non-coding RNA gene. Here, we investigated the function of DIRC3 in DTCs. Using patient-matched thyroid tissue pairs and The Cancer Genome Atlas data, we established that DIRC3 is downregulated in DTCs, whereas high expression of DIRC3 in tumors may reduce the risk of cancer recurrence. DIRC3 transcripts were enriched in cell nuclei, where they upregulated insulin-like growth factor binding protein 5 (IGFBP5), a gene that modulates the cellular response to insulin-like growth factor 1 (IGF1). Silencing DIRC3 in thyroid cancer cell lines (MDA-T32 and MDA-T120) had a dichotomous phenotypic influence: augmented cell migration and invasiveness, reduced apoptosis, but abrogated the MTT reduction rate. Transcriptomic profiling and gene rescue experiments indicated the functional redundancy in the activities of DIRC3 and IGFBP5. Moreover, the reduced level of DIRC3 enhanced the susceptibility of thyroid cancer cells to IGF1 stimulation and promoted Akt signaling via downregulation of the IGFBP5 protein. In conclusion, DIRC3 expression alters the phenotype of thyroid cancer cells and regulates the activity of the IGFBP5/IGF1/Akt axis. Our findings suggest that an interplay between DIRC3 and IGF signaling may play a role in promoting thyroid carcinogenesis.


Assuntos
RNA Longo não Codificante , Neoplasias da Glândula Tireoide , Humanos , RNA Longo não Codificante/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Fator de Crescimento Insulin-Like I/metabolismo , Neoplasias da Glândula Tireoide/genética
4.
Genome Biol ; 24(1): 120, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198601

RESUMO

Spatial transcriptomics maps gene expression across tissues, posing the challenge of determining the spatial arrangement of different cell types. However, spatial transcriptomics spots contain multiple cells. Therefore, the observed signal comes from mixtures of cells of different types. Here, we propose an innovative probabilistic model, Celloscope, that utilizes established prior knowledge on marker genes for cell type deconvolution from spatial transcriptomics data. Celloscope outperforms other methods on simulated data, successfully indicates known brain structures and spatially distinguishes between inhibitory and excitatory neuron types based in mouse brain tissue, and dissects large heterogeneity of immune infiltrate composition in prostate gland tissue.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Masculino , Animais , Camundongos , Neurônios , Encéfalo , Modelos Estatísticos
5.
Cancers (Basel) ; 15(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37046852

RESUMO

BACKGROUND: Multiple myeloma (MM) is associated with increased cardiovascular morbidity and mortality, while MM therapies also result in adverse cardiac effects. Endothelial dysfunction and impaired nitric oxide (NO) pathway is their possible mediator. OBJECTIVE: Since MM is associated with increased arginase expression, resulting in the consumption of ʟ-arginine, precursor for NO synthesis, our aim was to test if cardiotoxicity mediated by MM and MM therapeutic, bortezomib (a proteasome inhibitor), can be ameliorated by an arginase inhibitor through improved endothelial function. METHODS: We used a mouse Vĸ*MYC model of non-light chain MM. Cardiac function was assessed by echocardiography. RESULTS: MM resulted in progressive left ventricular (LV) systolic dysfunction, and bortezomib exacerbated this effect, leading to significant impairment of LV performance. An arginase inhibitor, OAT-1746, protected the heart against bortezomib- or MM-induced toxicity but did not completely prevent the effects of the MM+bortezomib combination. MM was associated with improved endothelial function (assessed as NO production) vs. healthy controls, while bortezomib did not affect it. OAT-1746 improved endothelial function only in healthy mice. NO plasma concentration was increased by OAT-1746 but was not affected by MM or bortezomib. CONCLUSIONS: Bortezomib exacerbates MM-mediated LV systolic dysfunction in a mouse model of MM, while an arginase inhibitor partially prevents it. Endothelium does not mediate either these adverse or beneficial effects. This suggests that proteasome inhibitors should be used with caution in patients with advanced myeloma, where the summation of cardiotoxicity could be expected. Therapies aimed at the NO pathway, in particular arginase inhibitors, could offer promise in the prevention/treatment of cardiotoxicity in MM.

6.
Clin Exp Med ; 23(5): 1563-1572, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36044158

RESUMO

Multiple myeloma (MM), a hematological malignancy of plasma cells, has remained incurable despite the development of novel therapies that improve patients' outcome. Recent evidence indicates that the stimulator of interferon genes (STING) pathway may represent a novel target for induction of antitumor immune response in multiple myeloma. Here, we investigated antitumor effects of STING agonist with bortezomib with or without checkpoint inhibitor in the treatment of MM. METHODS: STING expression in bone marrow plasma cells of 58 MM patients was examined by immunohistochemical staining. The effectiveness of the proposed therapy was evaluated in vivo in a syngeneic transplantable mouse model of MM (Vĸ*MYC) in immunocompetent mice. Flow cytometry was used to assess tumor burden and investigate activation of immune response against MM. ELISA was performed to measure serum inflammatory cytokines concentrations upon treatment. RESULTS: Combining a STING agonist [2'3'-cGAM(PS)2] with bortezomib significantly decreased tumor burden and improved the survival of treated mice compared to either of the compounds used alone. The combination treatment led to secretion of pro-inflammatory cytokines and increased the percentage of neutrophils, activated dendritic cells and T cells in the tumor microenvironment. However, it resulted also in increased expression of PD-L1 on the surface of the immune cells. Addition of anti-PD1 antibody further potentiated the therapeutic effects. CONCLUSIONS: Our findings indicate high antimyeloma efficacy of the three-drug regimen comprising bortezomib, STING agonist, and a checkpoint inhibitor.


Assuntos
Mieloma Múltiplo , Humanos , Camundongos , Animais , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Citocinas , Linfócitos T , Microambiente Tumoral
7.
Front Mol Biosci ; 9: 1073797, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36533080

RESUMO

DNA damage response (DDR) deficiencies result in genome instability, which is one of the hallmarks of cancer. Poly (ADP-ribose) polymerase (PARP) enzymes take part in various DDR pathways, determining cell fate in the wake of DNA damage. PARPs are readily druggable and PARP inhibitors (PARPi) against the main DDR-associated PARPs, PARP1 and PARP2, are currently approved for the treatment of a range of tumor types. Inhibition of efficient PARP1/2-dependent DDR is fatal for tumor cells with homologous recombination deficiencies (HRD), especially defects in breast cancer type 1 susceptibility protein 1 or 2 (BRCA1/2)-dependent pathway, while allowing healthy cells to survive. Moreover, PARPi indirectly influence the tumor microenvironment by increasing genomic instability, immune pathway activation and PD-L1 expression on cancer cells. For this reason, PARPi might enhance sensitivity to immune checkpoint inhibitors (ICIs), such as anti-PD-(L)1 or anti-CTLA4, providing a rationale for PARPi-ICI combination therapies. In this review, we discuss the complex background of the different roles of PARP1/2 in the cell and summarize the basics of how PARPi work from bench to bedside. Furthermore, we detail the early data of ongoing clinical trials indicating the synergistic effect of PARPi and ICIs. We also introduce the diagnostic tools for therapy development and discuss the future perspectives and limitations of this approach.

8.
Sci Rep ; 12(1): 19660, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385153

RESUMO

Multiple myeloma (MM) remains an incurable malignancy of plasma cells despite constantly evolving therapeutic approaches including various types of immunotherapy. Increased arginase activity has been associated with potent suppression of T-cell immune responses in different types of cancer. Here, we investigated the role of arginase 1 (ARG1) in Vκ*MYC model of MM in mice. ARG1 expression in myeloid cells correlated with tumor progression and was accompanied by a systemic drop in ʟ-arginine levels. In MM-bearing mice antigen-induced proliferation of adoptively transferred T-cells was strongly suppressed and T-cell proliferation was restored by pharmacological arginase inhibition. Progression of Vκ*MYC tumors was significantly delayed in mice with myeloid-specific ARG1 deletion. Arginase inhibition effectively inhibited tumor progression although it failed to augment anti-myeloma effects of bortezomib. However, arginase inhibitor completely prevented development of bortezomib-induced cardiotoxicity in mice. Altogether, these findings indicate that arginase inhibitors could be further tested as a complementary strategy in multiple myeloma to mitigate adverse cardiac events without compromising antitumor efficacy of proteasome inhibitors.


Assuntos
Mieloma Múltiplo , Camundongos , Animais , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Arginase/metabolismo , Cardiotoxicidade , Inibidores de Proteassoma/farmacologia
9.
Int J Mol Sci ; 23(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35563652

RESUMO

(1) Background: Transcriptomic and proteomic studies provide a wealth of new genes potentially involved in red blood cell (RBC) maturation or implicated in the pathogenesis of anemias, necessitating validation of candidate genes in vivo; (2) Methods: We inactivated one such candidate, transmembrane and coiled-coil domain 2 (Tmcc2) in mice, and analyzed the erythropoietic phenotype by light microscopy, transmission electron microscopy (TEM), and flow cytometry of erythrocytes and erythroid precursors; (3) Results: Tmcc2-/- pups presented pallor and reduced body weight due to the profound neonatal macrocytic anemia with numerous nucleated RBCs (nRBCs) and occasional multinucleated RBCs. Tmcc2-/- nRBCs had cytoplasmic intrusions into the nucleus and double membranes. Significantly fewer erythroid cells were enucleated. Adult knockouts were normocytic, mildly polycythemic, with active extramedullary erythropoiesis in the spleen. Altered relative content of different stage CD71+TER119+ erythroid precursors in the bone marrow indicated a severe defect of erythroid maturation at the polychromatic to orthochromatic transition stage; (4) Conclusions: Tmcc2 is required for normal erythropoiesis in mice. While several phenotypic features resemble congenital dyserythropoietic anemias (CDA) types II, III, and IV, the involvement of TMCC2 in the pathogenesis of CDA in humans remains to be determined.


Assuntos
Anemia Diseritropoética Congênita , Anemia , Anemia/patologia , Anemia Diseritropoética Congênita/genética , Animais , Eritroblastos/patologia , Eritrócitos/patologia , Eritropoese/genética , Camundongos , Proteômica
12.
Commun Biol ; 4(1): 1384, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893694

RESUMO

CD71+ erythroid cells (CECs) have been recently recognized in both neonates and cancer patients as potent immunoregulatory cells. Here, we show that in mice early-stage CECs expand in anemia, have high levels of arginase 2 (ARG2) and reactive oxygen species (ROS). In the spleens of anemic mice, CECs expansion-induced L-arginine depletion suppresses T-cell responses. In humans with anemia, CECs expand and express ARG1 and ARG2 that suppress T-cells IFN-γ production. Moreover, bone marrow CECs from healthy human donors suppress T-cells proliferation. CECs differentiated from peripheral blood mononuclear cells potently suppress T-cell activation, proliferation, and IFN-γ production in an ARG- and ROS-dependent manner. These effects are the most prominent for early-stage CECs (CD71highCD235adim cells). The suppressive properties disappear during erythroid differentiation as more differentiated CECs and mature erythrocytes lack significant immunoregulatory properties. Our studies provide a novel insight into the role of CECs in the immune response regulation.


Assuntos
Células Eritroides/imunologia , Tolerância Imunológica , Linfócitos T/imunologia , Adulto , Animais , Antígenos CD/metabolismo , Linhagem Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Receptores da Transferrina/metabolismo , Adulto Jovem
13.
Cell Death Dis ; 12(12): 1111, 2021 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-34839359

RESUMO

Chemoresistance constitutes a major challenge in the treatment of triple-negative breast cancer (TNBC). Mixed-Lineage Kinase 4 (MLK4) is frequently amplified or overexpressed in TNBC where it facilitates the aggressive growth and migratory potential of breast cancer cells. However, the functional role of MLK4 in resistance to chemotherapy has not been investigated so far. Here, we demonstrate that MLK4 promotes TNBC chemoresistance by regulating the pro-survival response to DNA-damaging therapies. We observed that MLK4 knock-down or inhibition sensitized TNBC cell lines to chemotherapeutic agents in vitro. Similarly, MLK4-deficient cells displayed enhanced sensitivity towards doxorubicin treatment in vivo. MLK4 silencing induced persistent DNA damage accumulation and apoptosis in TNBC cells upon treatment with chemotherapeutics. Using phosphoproteomic profiling and reporter assays, we demonstrated that loss of MLK4 reduced phosphorylation of key DNA damage response factors, including ATM and CHK2, and compromised DNA repair via non-homologous end-joining pathway. Moreover, our mRNA-seq analysis revealed that MLK4 is required for DNA damage-induced expression of several NF-кB-associated cytokines, which facilitate TNBC cells survival. Lastly, we found that high MLK4 expression is associated with worse overall survival of TNBC patients receiving anthracycline-based neoadjuvant chemotherapy. Collectively, these results identify a novel function of MLK4 in the regulation of DNA damage response signaling and indicate that inhibition of this kinase could be an effective strategy to overcome TNBC chemoresistance.


Assuntos
Dano ao DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , MAP Quinase Quinase Quinases/genética , Oncogenes/genética , Neoplasias de Mama Triplo Negativas/genética , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Transfecção , Neoplasias de Mama Triplo Negativas/patologia
14.
Cancer Res ; 81(23): 6029-6043, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34625423

RESUMO

The family of PIM serine/threonine kinases includes three highly conserved oncogenes, PIM1, PIM2, and PIM3, which regulate multiple prosurvival pathways and cooperate with other oncogenes such as MYC. Recent genomic CRISPR-Cas9 screens further highlighted oncogenic functions of PIMs in diffuse large B-cell lymphoma (DLBCL) cells, justifying the development of small-molecule PIM inhibitors and therapeutic targeting of PIM kinases in lymphomas. However, detailed consequences of PIM inhibition in DLBCL remain undefined. Using chemical and genetic PIM blockade, we comprehensively characterized PIM kinase-associated prosurvival functions in DLBCL and the mechanisms of PIM inhibition-induced toxicity. Treatment of DLBCL cells with SEL24/MEN1703, a pan-PIM inhibitor in clinical development, decreased BAD phosphorylation and cap-dependent protein translation, reduced MCL1 expression, and induced apoptosis. PIM kinases were tightly coexpressed with MYC in diagnostic DLBCL biopsies, and PIM inhibition in cell lines and patient-derived primary lymphoma cells decreased MYC levels as well as expression of multiple MYC-dependent genes, including PLK1. Chemical and genetic PIM inhibition upregulated surface CD20 levels in an MYC-dependent fashion. Consistently, MEN1703 and other clinically available pan-PIM inhibitors synergized with the anti-CD20 monoclonal antibody rituximab in vitro, increasing complement-dependent cytotoxicity and antibody-mediated phagocytosis. Combined treatment with PIM inhibitor and rituximab suppressed tumor growth in lymphoma xenografts more efficiently than either drug alone. Taken together, these results show that targeting PIM in DLBCL exhibits pleiotropic effects that combine direct cytotoxicity with potentiated susceptibility to anti-CD20 antibodies, justifying further clinical development of such combinatorial strategies. SIGNIFICANCE: These findings demonstrate that inhibition of PIM induces DLBCL cell death via MYC-dependent and -independent mechanisms and enhances the therapeutic response to anti-CD20 antibodies by increasing CD20 expression.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Rituximab/farmacologia , Animais , Antígenos CD20 , Antineoplásicos Imunológicos/farmacologia , Apoptose , Proliferação de Células , Feminino , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Camundongos , Camundongos SCID , Fosforilação , Proteínas Proto-Oncogênicas c-myc/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Oncoimmunology ; 10(1): 1956143, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367736

RESUMO

Immunotherapy has demonstrated significant activity in a broad range of cancer types, but still the majority of patients receiving it do not maintain durable therapeutic responses. Amino acid metabolism has been proposed to be involved in the regulation of immune response. Here, we investigated in detail the role of arginase 1 (Arg1) in the modulation of antitumor immune response against poorly immunogenic Lewis lung carcinoma. We observed that tumor progression is associated with an incremental increase in the number of Arg1+ myeloid cells that accumulate in the tumor microenvironment and cause systemic depletion of ʟ-arginine. In advanced tumors, the systemic concentrations of ʟ-arginine are decreased to levels that impair the proliferation of antigen-specific T-cells. Systemic or myeloid-specific Arg1 deletion improves antigen-induced proliferation of adoptively transferred T-cells and leads to inhibition of tumor growth. Arginase inhibitor was demonstrated to modestly inhibit tumor growth when used alone, and to potentiate antitumor effects of anti-PD-1 monoclonal antibodies and STING agonist. The effectiveness of the combination immunotherapy was insufficient to induce complete antitumor responses, but was significantly better than treatment with the checkpoint inhibitor alone. Together, these results indicate that arginase inhibition alone is of modest therapeutic benefit in poorly immunogenic tumors; however, in combination with other treatment strategies it may significantly improve survival outcomes.


Assuntos
Carcinoma Pulmonar de Lewis , Neoplasias Pulmonares , Animais , Arginase , Carcinoma Pulmonar de Lewis/terapia , Humanos , Pulmão , Neoplasias Pulmonares/terapia , Linfócitos T , Microambiente Tumoral
16.
Pharmacol Ther ; 228: 107927, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34171326

RESUMO

Complex regulation of the immune response is necessary to support effective defense of an organism against hostile invaders and to maintain tolerance to harmless microorganisms and autoantigens. Recent studies revealed previously unappreciated roles of CD71+ erythroid cells (CECs) in regulation of the immune response. CECs physiologically reside in the bone marrow where erythropoiesis takes place. Under stress conditions, CECs are enriched in some organs outside of the bone marrow as a result of extramedullary erythropoiesis. However, the role of CECs goes well beyond the production of erythrocytes. In neonates, increased numbers of CECs contribute to their vulnerability to infectious diseases. On the other side, neonatal CECs suppress activation of immune cells in response to abrupt colonization with commensal microorganisms after delivery. CECs are also enriched in the peripheral blood of pregnant women as well as in the placenta and are responsible for the regulation of feto-maternal tolerance. In patients with cancer, anemia leads to increased frequency of CECs in the peripheral blood contributing to diminished antiviral and antibacterial immunity, as well as to accelerated cancer progression. Moreover, recent studies revealed the role of CECs in HIV and SARS-CoV-2 infections. CECs use a full arsenal of mechanisms to regulate immune response. These cells suppress proinflammatory responses of myeloid cells and T-cell proliferation by the depletion of ʟ-arginine by arginase. Moreover, CECs produce reactive oxygen species to decrease T-cell proliferation. CECs also secrete cytokines, including transforming growth factor ß (TGF-ß), which promotes T-cell differentiation into regulatory T-cells. Here, we comprehensively describe the role of CECs in orchestrating immune response and indicate some therapeutic approaches that might be used to regulate their effector functions in the treatment of human conditions.


Assuntos
Antígenos CD , Células Eritroides , Imunidade , Receptores da Transferrina , Antígenos CD/fisiologia , COVID-19 , Células Eritroides/metabolismo , Humanos , Imunidade/fisiologia , Receptores da Transferrina/fisiologia
17.
Cancers (Basel) ; 13(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669537

RESUMO

Cancer cells harness normal cells to facilitate tumor growth and metastasis. Within this complex network of interactions, the establishment and maintenance of immune evasion mechanisms are crucial for cancer progression. The escape from the immune surveillance results from multiple independent mechanisms. Recent studies revealed that besides well-described myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs) or regulatory T-cells (Tregs), erythroid progenitor cells (EPCs) play an important role in the regulation of immune response and tumor progression. EPCs are immature erythroid cells that differentiate into oxygen-transporting red blood cells. They expand in the extramedullary sites, including the spleen, as well as infiltrate tumors. EPCs in cancer produce reactive oxygen species (ROS), transforming growth factor ß (TGF-ß), interleukin-10 (IL-10) and express programmed death-ligand 1 (PD-L1) and potently suppress T-cells. Thus, EPCs regulate antitumor, antiviral, and antimicrobial immunity, leading to immune suppression. Moreover, EPCs promote tumor growth by the secretion of growth factors, including artemin. The expansion of EPCs in cancer is an effect of the dysregulation of erythropoiesis, leading to the differentiation arrest and enrichment of early-stage EPCs. Therefore, anemia treatment, targeting ineffective erythropoiesis, and the promotion of EPC differentiation are promising strategies to reduce cancer-induced immunosuppression and the tumor-promoting effects of EPCs.

18.
Cancer Lett ; 507: 13-25, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33713737

RESUMO

Proteasome inhibitors (PIs), used in the treatment of plasma cell myeloma (PCM), interfere with the degradation of misfolded proteins leading to activation of unfolded protein response (UPR) and cell death. However, despite initial strong antimyeloma effects, PCM cells eventually develop acquired resistance to PIs. The pleiotropic role of ʟ-glutamine (Gln) in cellular functions makes inhibition of Gln metabolism a potentially good candidate for combination therapy. Here, we show that PCM cells, both sensitive and resistant to PIs, express membrane Gln transporter (ASCT2), require extracellular Gln for survival, and are sensitive to ASCT2 inhibitors (ASCT2i). ASCT2i synergistically potentiate the cytotoxic activity of PIs by inducing apoptosis and modulating autophagy. Combination of ASCT2 inhibitor V9302 and proteasome inhibitor carfilzomib upregulates the intracellular levels of ROS and oxidative stress markers and triggers catastrophic UPR as shown by upregulated spliced Xbp1 mRNA, ATF3 and CHOP levels. Moreover, analysis of RNA sequencing revealed that the PI in combination with ASCT2i reduced the levels of Gln metabolism regulators such as MYC and NRAS. Analysis of PCM patients' data revealed that upregulated ASCT2 and other Gln metabolism regulators are associated with advanced disease stage and with PIs resistance. Altogether, we identified a potent therapeutic approach that may prevent acquired resistance to PIs and may contribute to the improvement of treatment of patients suffering from PCM.


Assuntos
Sistema ASC de Transporte de Aminoácidos/antagonistas & inibidores , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Bortezomib/farmacologia , Glutamina/análogos & derivados , Glutamina/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Oligopeptídeos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glutamina/farmacologia , Humanos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Estresse Oxidativo/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
19.
Hum Mol Genet ; 30(3-4): 226-233, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33517393

RESUMO

Interleukin-6 signal transducer (IL6ST) encodes the GP130 protein which transduces the proinflammatory signaling of the IL6 cytokine family through Janus kinase signal transducers and activators of transcription pathway (JAK/STAT) activation. Biallelic loss-of-function IL6ST variants cause autosomal recessive hyper-IgE syndrome or a variant of the Stuve-Wiedemann syndrome. Somatic gain-of-function IL6ST mutations, in particular, small monoallelic in-frame deletions of which the most prevalent is the IL6ST Ser187_Tyr190del, are an established cause of inflammatory hepatocellular tumors, but so far, no disease caused by such mutations present constitutively has been described. Herein, we report a pediatric proband with a novel syndrome of neonatal onset immunodeficiency with autoinflammation and dysmorphy associated with the IL6ST Tyr186_Tyr190del variant present constitutively. Tyr186_Tyr190del was found by exome sequencing and was shown to be de novo (absent in proband's parents and siblings) and mosaic (present in approximately 15-40% of cells depending on the tissue studied-blood, urine sediment, hair bulbs and buccal swab). Functional studies were performed in the Epstein-Barr virus-immortalized patient's B cell lymphoblastoid cell line, which carried the variant in approximately 95% of the cells. Western blot showed that the patient's cells exhibited constitutive hyperphosphorylation of Tyr705 in STAT3, which is indicative of IL6-independent activation of GP130. Interestingly, the STAT3 phosphorylation could be inhibited with ruxolitinib as well as tofacitinib, which are clinically approved JAK1 and JAK3 (to lesser extent JAK2 and JAK1) inhibitors, respectively. Given our results and the recent reports of ruxolitinib and tofacitinib use for the treatment of diseases caused by direct activation of STAT3 or STAT1, we speculate that these drugs may be effective in the treatment of our patient's condition.


Assuntos
Receptor gp130 de Citocina/genética , Doenças Hereditárias Autoinflamatórias/genética , Síndromes de Imunodeficiência/genética , Deleção de Sequência , Transdução de Sinais , Criança , Receptor gp130 de Citocina/metabolismo , Doenças Hereditárias Autoinflamatórias/tratamento farmacológico , Doenças Hereditárias Autoinflamatórias/metabolismo , Humanos , Síndromes de Imunodeficiência/congênito , Síndromes de Imunodeficiência/tratamento farmacológico , Síndromes de Imunodeficiência/metabolismo , Masculino , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Linhagem , Fosforilação , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Polônia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Processamento de Proteína Pós-Traducional , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , População Branca/genética , Sequenciamento do Exoma
20.
Nanoscale ; 12(38): 19880-19887, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32975267

RESUMO

The efficient delivery of drugs to cells depends on their diffusion through the extracellular matrix (ECM) of tissues. Here we present a study on the diffusion of nanoprobes of radius from 1 nm to over 100 nm in the ECM of spheroids of three cell types (HeLa, MCF-7 and fibroblasts). We quantified the nanoparticle transport in the spheroids' proliferating zone. We determined the size-dependent viscosity of the ECM. We revealed that nanoobjects up to 10 nm in radius exhibited unobstructed diffusion in the ECM, regardless of the spheroid type. The presented length-scale dependent viscosity profiles for spheroids pave the way for advanced modelling of drug administration through tissues.


Assuntos
Nanopartículas , Esferoides Celulares , Difusão , Matriz Extracelular , Fibroblastos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...